Alkalinity to calcium flux ratios for corals and coral reef communities: variances between isolated and community conditions
نویسندگان
چکیده
Calcification in reef corals and coral reefs is widely measured using the alkalinity depletion method which is based on the fact that two protons are produced for every mole of CaCO3 precipitated. This assumption was tested by measuring the total alkalinity (TA) flux and Ca(2+) flux of isolated components (corals, alga, sediment and plankton) in reference to that of a mixed-community. Experiments were conducted in a flume under natural conditions of sunlight, nutrients, plankton and organic matter. A realistic hydrodynamic regime was provided. Groups of corals were run separately and in conjunction with the other reef components in a mixed-community. The TA flux to Ca(2+) flux ratio (ΔTA: ΔCa(2+)) was consistently higher in the coral-only run (2.06 ± 0.19) than in the mixed-community run (1.60 ± 0.14, p-value = 0.011). The pH was higher and more stable in the mixed-community run (7.94 ± 0.03 vs. 7.52 ± 0.07, p-value = 3 × 10(-5)). Aragonite saturation state (Ω arag) was also higher in the mixed-community run (2.51 ± 0.2 vs. 1.12 ± 0.14, p-value = 2 × 10(-6)). The sediment-only run revealed that sediment is the source of TA that can account for the lower ΔTA: ΔCa(2+) ratio in the mixed-community run. The macroalgae-only run showed that algae were responsible for the increased pH in the mixed-community run. Corals growing in a mixed-community will experience an environment that is more favorable to calcification (higher daytime pH due to algae photosynthesis, additional TA and inorganic carbon from sediments, higher Ω arag). A paradox is that the alkalinity depletion method will yield a lower net calcification for a mixed-community versus a coral-only community due to TA recycling, even though the corals may be calcifying at a higher rate due to a more optimal environment.
منابع مشابه
Biodiversity and distribution patterns of coral reef ecosystems in ROPME Sea Area (Inner part: Persian Gulf -Iranian waters)
The Persian Gulf is northern part of the ROPME Sea Area (RSA), and is semi-enclosed shallow sea which located in subtropical climate. Measuring is 1000km in length, varying in width 60-340km, and average depth is about 35m and maximum depth is 105m. This research was carried out during 2005-2010 for reviewing the corals status and determination of coral reef habitats distribution in the Persian...
متن کاملOcean acidification accelerates dissolution of experimental coral reef communities
This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available. Abstract Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO 2. Studies of similar effects on coral reef ...
متن کاملBacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress
The coral holobiont model highlights the integral role bacteria play in the health of reefbuilding corals. Documenting the natural diversity of bacterial communities within, and closely associated with, coral tissues provides information on the diversity, interaction and roles of bacteria to the function of reef-building corals. Fluorescence in situ hybridisation was used to visualise bacterial...
متن کاملMolecular diversity of Symbiodinium spp. within six coral species in Larak Island, the Persian Gulf
Reef-building coral harbor communities of photosynthetic taxa of the genus Symbiodinium (zooxanthellae). The genus Symbiodinium is currently classified into nine genetic clades (A–I). Various corals harbor different Symbiodinium clades; some show specificity to a single strain. Coral and their zooxanthellae are sensitive to environmental stresses. In the Persian Gulf, coral reefs are subject to...
متن کاملPast, present and future state of the carbonate system and acidification in Hengam coral reef in the Persian Gulf
Assuming the possible scenario ICCP RCP8.5, by 2100, the pH of seawater in Hengam coral reef in the Persian Gulf will decrease by 0.46 compared to 1880 (to less than 7.72). Total dissolved inorganic carbon will increase from 2006 to 2263 µmol/kg. The concentration of bicarbonate ions will increase by 24% and the carbonate ions will decrease by 51%. The saturation of calcium carbonate in seawate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014